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On the basis of results of preliminary tests, described earlier, the authors have 
constructed a physical model of the channel evaporator. 

Physical Model of the Evaporator. This model is based on the following conditions: i) 
the channels have a regular geometric form; 2) the liquid moves in the channel only because 
of surface tension forces; 3) the capillary pressure in the channel is equal to the difference 
in the equivalent minisci of the liquid; 4) the working liquid practically fully wets the 
channel material; 5) the transverse meniscus is replaced by the nominal width of the liquid 
layer; 6) in a triangular channel with maximum heat removal at the initial section the nominal 
width of the liquid layer is equal to the channel width, and tends to zero at the end section; 
7) in a rectangular channel with maximum heat removal at the initial section the equivalent 
miniscus is flat, and is equal to half the channel width at the end section; 8) the heat re- 
moval is hyperbolic along the channel; 9) the liquid flow is laminar; I0) the vapor pressure 
above the liquid is cons=ant; ii) =here is no heat transfer between the dry walls of the 
evaporator and the vapor; 12) at any cross section of the liquid flow in the channel the 
capillary pressure increment is equal to the increment of hydraulic resistance. 

Theoretical Formula for the Maximum Heat Flux. Triangular Channel 

Constant Channel Width. The derivation of the formula is based on the variation of 
capillary pressure being equal to the hydraulic drag at any cross section of the liquid flow 
in the channel 

dPcap 
_ deh (1) 

dx dx  

The capillary pressure in a triangular channel is 

d P a p  a d M  : - -  ~ cos O dR (x) __ a cos O dt 
= I~ ~ (x) --  - - ' l  2 (X) Ci (<z) (2)  

According to the Hagen--Poiseuille law, the hydraulic resistance is 

d p  h = [m (x) P'Z _ dx. (3)  
A (x) D~ (x) Pt 

The mass flux of liquid in the channel at any section can be represented as the dif- 
ference between the flux of all the liquid vaporized and the flux vaporized in the section 
from X = xo to X = xo + x: 

r e ( x ) :  --Q~ xoln x~ 2vXmax (4) 
F* Xo -t- X 

At the same time, we have 

Q0 Xo + Xmax qmaxXmax t (5)  
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Then the variation in resistance along the channel is 

1!1 X. ~- Xma x 

dp h = . qmaxXmaxt[~*l Xo q- X 
r ' p / t  ~ (x) Ca (~) Ca 2 (a) In xo + Xm~x 

Xo 

dx (6) 

We equate Eqs. (2)  and (6) and integrate 

t 

o" cos 0 [ 
C, (a) ., t 2 (x) dt = 

0 

After integrating we have 

Xmax In Xo @ Xmax, 
qmaxtf~ ~ Xo + x 

dx. 
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l g * p  z q cos 0 C~ (a) Ca (e) (8)  
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In Xo + Xmax 
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Since, for a given channel shape, the friction factor depends mainly on the angle a~ we intro- 
duce the following coefficient: 

In addition, we designate 

1 (9) 
K (~) = 

3f 

Finally, Eq. (8) takes the form 

N: l r*p~ 
= , (io) 

C~ (~) Ca (~) (ii) 
C (c0 = C, (o0 

qmax = 
t2N z cos 0 C (r K (a)  _ _  

[ ] (X O -@ Xmax) __ X 0 
Xmax Xo -'}- Xmax 

In 
Xo 

( i 2 )  

Constant Channel Depth. In this case we determine the optimal angle a for which maximum 
heat removal is achieved. With d = const we write Eq. (12) as 

d2Nl cos O (1 - -  sin ~) sin a K (~) (13)  

q m a x :  Xmax [ (Xo+Xm,,) + Xm~ 
In 

xo 

The function qmax = ~(a) has a maximum at the point a = 19 ~ (2a = 38~ 

Rectangular Channel. As in the previous case, derivation of the theoretical formula is 
based on equality of the variation of capillary pressure and hydraulic drag: 

0=90 ~ 

2~ ~ sin OdO- 2~ g 
~ap t o ! ' 

8=0 ~ 
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Fig. i. Maximum heat flux density as a function of: a) the 
channel vertex angle, qmax-10 -4 W/m 2, u, in deg; Xma x = 40. 
I0 -a m; t = 0.4.10 -3 m; b) the channel length, qmax.10 -~ W/m2; 
mmax.103 m, t = 0.4.10 -3 m; 2a = 30 ~ (i is experiment; 2 is 
theory). 

In the general case the expression for the maximum heat flux has the form 

tN z K (d) 
q ~ a x  - (COS0.o+.ma x - -  c o s  0.o),  

Xmax I 

where 

(17) 
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The numerical value of I has a minus sign. 

In the theoretical formulas (12), (13) and (17) there is a term xo = i0 -a m. It should 
be regarded as a constant factor, determined by the structure of the experimental evaporator 
element. In heat pipes the section of channel occupied by the artery connector is so small 
that it can be neglected. Therefore, in designing evaporators according to the above formulas 
(12), (13), and (17) we should consider that Xma x is the entire channel length, and that xo = 
10 -a is a constant coefficient. 

Comparison of Experimental and Theoretical Results. During the experiments we recorded 
the heat flux density as a function of the channel wall overheat above the saturation tempera- 
ture. The heat flux increased with increase of ATav. At lowoverheat (5-10~ heat was 
removed by evaporation. By eye we observedunperturbed flow of liquid along the channel, and 
we clearly tracked its penetration along the length. With further increase in overheat the 
process of bubble formation in the liquid flow began. Since the vapor pressure in a bubble 
is higher than the saturation pressure, bubble breakdown is accompanied by sputtering of 
liquid. With increase of overheat the sputtering intensity increases, so that it is a quali- 
tative measure of the heat removal intensity in the channel. However, the intensification 
of heat removal with increase of overheat is not unbounded. At a certain value of ATav the 
heat flux density reaches a maximum, since the rate of heat supply is equal to the maximum 
possible rate of removal achieved by the channel. The higher is the mass flow rate of working 
liquid in the channel, the larger is the power that it can dissipate. 
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Fig. 2. Maximum heat flux density as a function of the width 
of a triangular channel: Xma x = 40,10 -3 m, 2~ = 30 ~ [i) experi- 
ment; 2) theory; 3) transmlssion capibility of the arteries]. 
qmax-10 -~, W/m ~, t,103, m. 

Fig. 3. Maximum heat flux density as a function of the depth/ 
width ratio of a triangular channel: Xma x = 40,10 -3 m, t = 0.4, 
10 -3 m [i) experiment; 2) theory], qmax,10 -~ W/m ~, 2d/t. 
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Fig. 4. Comparison of the results with the 
data of Marits: i) theory; 2, 3, 4, 5) pipes 
of 19/1, 19/2, 20/1, 20/2, respectively. 
qmax.lO -~, W/m ~, T, K. 

For triangular channels the width of the base of the triangle was varied from 0.25,10 -3 
to 0.8,10 -3 m, the vertex angle from 15 to 90 ~ , and the length of the evaporator section from 
5,10 -3 to 40,10 -3 m. From the experimental results we determined that (Fig. ia) 

K (~) : 0.0535 (2~) ~'~5. ( 2 2 )  

The investigations conducted have confirmed the basic premise of the physical model that 
the heat removal is hyperbolic along the channel length. A decrease of the length of the 
evaporator section of the channel from 40,10 -3 to 5,10 -s m caused an increase in the heat flux 
by more than a factor of 4, while for uniform heat removal the degree of increase should be 
64. It should be noted that the heat flux density in the channel at Xma x = 5.10 -3 m exceeded 
the critical value for a large volume [i]. This is explained by it being impossible to form 
a stable vapor film because the channel height exceeded the separation diameter. In the 
supercritical zone the experimental heat flux density is below the theoretical. Probably 
the increase of bubble formation and the formation of dry spots on the channel wall create 
added resistance to flow of the working liquid (Fig. ib). 

An increase in channel width caused an increase in the flow rate of liquid passing along 
it. Therefore, the heat transfer was intensified. However, the increase in channel width 
correspondingly increases the channel equivalent radius, leading to a reduced capillary pres- 
sure driving the liquid along the arteries (Fig. 2). 

1201 



The results of experiment and theory for a channel whose angle varied from 15 to 90 ~ are 
shown in Fig. la. With increase of angle there is reduced transmission cross section of 
channel, and therefore the heat removal drops in intensity. Experiment and theory show good 
agreement in the region of angle values from 15 to 60 ~ For 90 ~ the experimental heat flux 
is considerably above the theoretical. For the large angles there is a sharp fall in the 
capillary head and the process of liquid sputtering upon boiling is the dominant influence 
on the heat transfer. 

For the rectangular channelsthe experimentally determined coefficient K(d) was 

t 
K(d) : 1 4 . 5 - - .  (23) 

2d 

The authors investigated evaporators with channels of constant width (t = 0.4.10-' m) and 
length (Xma x = 40-10-' m), whose depth varied from 0.2,10-' to 1.6.10-' m. An increase of 
depth led to an increase in the transmission section of the channel and to intensification 
of circulation of acetone. However, it is difficult for a vapor bubble to escape in a chan- 
nel whose depth is too great, and it therefore slows down the rate of liquid motion. This 
leads to a considerable reduction in heat removal in channels that are too deep (Fig. 3). 

The data calculated from Eq. (12) are compared with the experiment of Marits [2] in Fig. 
4. It can be seen that theory and experiment agree satisfactorily (the maximum difference 
is 25%). 

The calculated values of the optimal vertex angle (2~ = 38 ~ for a triangular channel of 
constant depth agree well with the computed values (2~ = 30 ~ ) of Bresler and White [3]. 

NOTATION 

A(x), area of the transverse liquid layer in the channel at section x, mS; B, a factor 
accounting for the ratio of the current length to the total length of a rectangular channel; 
b(x), height of the liquid layer at section x, m; Dh, hydraulic diameter of the liquid flow 
in the channel at sectio~ x, m; d, channel depth, m; C(u), constant for a given value of u; 
C~(~), a constant defining R(x); Ca(u), a constant defining A(x); Ca(a), a constant defining 
Dh; f, friction factor; I, a definite integral; K, a coefficient; K(a), flow friction coef- 
ficient in a triangular channel; K(d), friction coefficient in a rectangular channel; m(x), 
mass flux of liquid in the channel at section x, ma/sec; M, meniscus, l/m; Nl, a characteris- 
tic of the working liquid; P, pressure, N/m'; Q, heat flux, W; Q~, height of hyperbola at the 
point Xo, W/m; q, heat flux density, W/ma; R, meniscus radius, m; r*, latent heat of vapori- 
zation, J/kg; T, temperature, ~ t, channel width, m; x, y, coordinates; u, semiangle at 
vertex of a triangular channel, deg; 8, wetting angle, deg; ~, viscosity, N.sec/m2; p, density, 
kg/m'; o, surface tension, N/m. Subscripts: h, hydraulic; l, liquid; cap, capillary; 0, 
initial; max, maximum; av, average; x, coordinate of channel section. 
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